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Preface

This report of our group work is split into the following chapters:

Chapter Introduction explains the task to fulfill and gives an introduction to this
project.

Chapter Interface Board presents the PCB providing additional features to the an-
alyzer.

Chapter FPGA Design describes the logic design of the system.

Chapter Firmware handles the software programmed into the softcore.

Chapter Client Software shows how the program on the PC works.

Chapter Conclusion presents our results and further possible improvement.

Chapter Appendix features several schematics, drawings and a list of required Tools.
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Figure 1: The BitHound Logic Analyzer without its case

Figure 2: The Authors: Lukas Schrittwieser and Mario Mauerer
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Chapter 1

Introduction

This is the documentation of the ,,BitHound” Digilent Design Contest entry realized by
Lukas Schrittwieser and Mario Mauerer

In this project, we have built a logic analyzer using a Digilent Atlys Spartan-6 FPGA-
Board and a self-made interface board.
A logic analyzer is a device used to display and analyze logic signal on e.g. data busses.
It is a sort of oscilloscope, being capable of only displaying digital ,,low” and ,,high”,
but with much more channels (32 in our case).

The logic analyzer is based on an open-source project made by Michael Poppitz.
(http://www.sump.org/projects/analyzer/)
That design uses a Spartan-3 FPGA as a 32-channel logic analyzer. A 1MB SRAM
serves as sample memory. The data sampled is transferred via UART to a personal
computer running a (self-written) Java client which displays the measurements.

The aim of our project was to improve this reference design in several points:

• Attaching a 128MB DRAM as sample memory.

• Using Ethernet to transfer the measured data to a computer.

• Building an Interface Board to attach 32 probes.

• Adapting the PC-client to our design.

Our logic analyzer fulfils our expectations and specifications. The above mentioned
project goals were met and the system works very well. The analyzer is able to sample 32
channels with 200MHz or 16 channels with 400MHz. The data will then be transferred
via 100MBit/s Ethernet from the 128MB DRAM to the PC client that will then display
them.
We have therefore built a versatile tool that can be used to debug digital circuits.

Figure 1.1 shows the block-diagram representation of our system.

http://www.sump.org/projects/analyzer/
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Figure 1.1: Block Diagram of the System

We chose to build this project because a logic analyzer is a well-suited application
for an FPGA. This project also gave us the opportunity to mix hardware, software and
digital design, which was great fun. Of course, we could have bought a logic analyzer
with the same features, but building one is much more challenging and entertaining.
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Interface Board

The interface board connects the circuit to analyze with the Atlys Spartan-6 FPGA-
board. Several aspects had to be regarded in order for the board to work properly even
at higher frequencies. Therefore, a few key features are included:

• The Probes

• The Level-Shifters

• The Overvoltage-Protection Circuitry

• Microcontroller and Boost-Converter

The schematic drawings of the interface board can be found in the appendix.

These features mentioned above will now be presented in more detail.

2.1 The Probes

The probes can be connected to the interface board with flatband cables. Each cable
holds 8 probes, so, there are 4 connectors to connect all 32 channels of the analyzer to
the device under test(DUT). One separate probe on each cable is used as ground probe.

The probes themselves can be easily clamped to the signal paths on the device one
wants to analyze. They can also be detached from the flatband cable and the remaining
female connector can then be used to attach the cable to a testpoint on the DUT.
Although flatband-cables are not very appropriate to conduct high frequency signals,
they have proven to be a reasonable solution for this application.
This has several reasons: Firstly, every second wire in the cable carries ground potential
which limits crosstalk among the signals. Secondly, the cables are not that long compared
to the expected wavelengths. And, last but not least, the flatband cables are a very cost-
effective solution.
Measurements with our system have showed that the flatband cables are suitable to
frequencies up to approximately 50MHz.
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2.2 Voltage Conversion

The level-shifters limit the input signals to a level suitable for the FPGA.
The Spartan-6 only accepts voltages up to 3.3V at its inputs, thus, there is need to adapt
the voltage of the input signals, which can be as high as 5.5V.
This task is performed by specialized level-shifter ICs. The task of choosing the appro-
priate level-shifter was not very easy because several aspects had to be kept in mind:
The input capacitance of the IC should be as low as possible to be able to transmit
high-frequency signals and not to build a lowpass-filter. Additionally, the transition
time through the level-shifter should be as low as possible, because then, straying in
these times between different ICs has a minor effect to time delays between different
channels.
It was also important that the circuitry needed to operate these shifters could be kept
simple; the level-shifter should accept voltages from 2.5V to 5.5V without the need to
change this input voltage range manually by the operator before the measurement takes
place, this could then have lead to the possibilty of faulty operation and thus, result in
damage.
Our choice fell to the ,,SN74ALVTH16244DL” from Texas Instruments. This is an ac-
tive 16 channel buffer that operates on 3.3V but is compatible with 5V-logic. Its output
voltage is 3.3V, thus, it is suitable for the Spartan-6. It has got a very small propaga-
tion delay of ca. 2ns and an input capacitance of only 3pF. With this level-shifter, its
application got nice and simple.
The inputs of the level-shifter need to be pulled down using resistors when the probes
are floating in order to bring the outputs of the level-shifter to a defined value. As these
resistors have a very large value, they will not affect the measured signal in a consider-
able way.

This level-shifter can handle voltages up to 7V at its inputs without getting destroyed
and without loosing its capability of limiting the applied voltage to 3.3V. This still leaves
the possibility of damaging the level-shifter, for example if a probe gets attached to 12V.
In such a condition, it is most important to protect the FPGA, therefore, no overvoltage
may pass the levelshifter at all.

This circumstance made it necessary to protect the inputs of the level-shifter with
an overvoltage-protection which limits large overvoltages to a maximum of 7V.

2.3 The Overvoltage-Protection Circuitry

This part of our design prevents damage to the level shifters and thus to the FPGA if
an excessive overvoltage is applied to the probes which would damage and destroy the
level-shifters.
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As the elements of this construction have to be built directly into the signal path of
each channel, it was of upmost importance that there would be as less distortion in the
signals as possible. This meant, that the capacitive load to the signals had to be kept
very low.

After some long and intensive brainstorming, we came up with the circuit depicted
in figure 2.1

Figure 2.1: OVP-Circuitry

Each channel has one 47-ohm resistor and one BAS70-04 double shottky diode at-
tached to its signal path. The rest of the circuit is common to all 32 channels. The
BAS70 has, as it is a schottky diode, an input capacitance of only 1.5pF, which is very
low, therefore it is well suited for our application.

2.3.1 Function Principle

The LM317 is an adjustable voltage regulator which is set with R7 to produce an output
voltage of approximately 6V. Under normal operating conditions, this voltage lies on C1,
the cathode of the upper diode in D1, the drain of the mosfet and the trimmer R6. This
trimmer is set in such a way that the LM358, which is a standard operational amplifier
(opamp), drives its output during normal operating conditions towards GND.
So, if no overvoltage is applied at the channels, not much happens because the upper
diode in D1 is not conductive, as the signal voltage is lower than the clamping voltage.
The mosfet is also not conductive because the opamp has its output near GND.

If a negative voltage is applied at the input, the lower diode in D1 becomes conduc-
tive and clamps the input voltage of the level shifter to approx. -0.4V, which is within
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the allowed operating range. Resistor R2 limits the resulting current.

If, on the other hand, a positive overvoltage is applied, our circuit kicks in; The aim
of the whole circuitry is to keep the voltage at C1 at about 6.5V. This is achieved with
the control loop established by the opamp and the mosfet. This effects that the upper
diode in D1 is conductive during an overvoltage condition and biased at a fixed voltage.
As a result, the voltage at the input of the level shifter stays limited. The resistor R2
limits the current through D1 so that it does not get destroyed. The diode D2 protects
the LM317, as the voltage at C1 rises above the output voltage of this voltage regulator
during clamping.

The maximum overvoltage the system can clamp is limited by the power dissipa-
tion in R2. During an overvoltage situation, the affected resistors get very hot and will
eventually burn if the situation lasts for too long. But this is not negative at all, as re-
sistors are exchanged very quickly, they can be considered as fuses which trip after some
overvoltage has been applied for too long. Experiments have shown that the resistors
are the weakest links, the BAS-70 will not get destroyed before the resistor has burnt.
The system can clamp voltages of about 12V without any resistors getting permanently
destroyed.

One major concern when designing this circuit was its stability. As this is a cloosed
loop system, it contains some feedback loops which had to be designed and analyzed
very carefully. We did this in several ways.

2.3.2 State-Space Model

Our first approach was a system analysis using a state-space representation. We wanted
to know, if our system is in principle stable and functional. Therefore, we have designed
a simple model of our circuitry.
This model was built using the circuit presented in figure 2.2

The opamp is assumed to be ideal, so is the mosfet. The gate capacitance is modelled
using C2. U1 ist the input- and Y1 the output voltage.
We have used this approach to see, if the circuit works in principal.

The mosfet has been modelled as a linear element: ID = UG · g = UC2 · g, where g
is the transconductance and UG the voltage at the gate. Thus, the drain current is a
linear function of the gate voltage. Non-linearities such as the threshold-voltage have
been neglected in this simple model.

The two resistors R5 and R4 form the feedback loop of the opamp and determine the
loop gain. The output voltage of the opamp (denoted UOV P ) is given by this equation:

UOV P = U+ +
R5

R4
· (U+ − U2) (2.1)
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Where U+ is the voltage at the positive input terminal of the opamp.
Regarding the voltage divider formed by R2 and R3 (which generates U+), the following
simplification can be made, because the divider has a very high resistance and the opamp
is assumed to be ideal (no current flowing into the input terminals): U+ = t · Y 1, where
t denotes the adjustable divider ratio. Thus, equation 2.1 can be written in this way:

UOV P = t · Y 1 +
R5

R4
· (t · Y 1− U2) (2.2)

Keeping this in mind, we can determine the equations for the gate voltage of the
mosfet. For capacitances, we know that IC = C · dUC/dt. So, for our gate capacitance:

IR6 = C2 · UC2

dt
=

UOV P − UC2

R6
(2.3)

This leads to:
UC2

dt
=

UOV P − UC2

C2 ·R6
(2.4)

Next, we will have a look at the input of the circuitry. The current flowing through
R1 is the sum of the current into C1 (IC1) and the current through the mosfet (ID). The
current through the voltage divider is neglectable, as it is very small. So, we see that:

IR1 =
U1 − Y 1

R1
= IC1 + ID (2.5)

ID can be expressed as UG · g. IC1 can be expressed as follows:

IC1 = C1 · dY 1

dt
(2.6)

From this equation, we see:
dY 1

dt
=
IC1

C1
(2.7)

Now, we can solve equation 2.5 after IC1 and set it into equation 2.7:

dY 1

dt
=

U1

R1 · C1
− Y 1

R1 · C1
− UC2 · g

C1
(2.8)

We now have all the necessary equations to form the state-space representation of
our system. As states, we will use Y 1 and UC2 which are the two capacitor voltages.
U1 and U2 are the inputs to our system and our states are also is the output. Using
equation 2.4 and equation 2.8, we find:[

˙Y 1
˙UC2

]
=

[
− 1

R1·C1 − g
C1

t
C2·R6 + R5·t

R4·C2·R6 − 1
C2·R6

] [
Y 1
UC2

]
+

[
1

R1·C1 0

0 − R5
R4·C2·R6

] [
U1
U2

]
(2.9)

Y =

[
1 0
0 1

] [
Y 1
UC2

]
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This state-space model can now be analyzed. In this simple analysis, we want to know,
if the system is stable or at least stabilizable. So, we have to calculate the eigenvalues
of the ,,A”-matrix:
We have to solve det(λI −A) = 0 after λ. This leads to:

1︸︷︷︸
a

·λ2+λ·
(

1

C1 ·R1
+

1

C2 ·R6

)
︸ ︷︷ ︸

b

+
g · t ·

(
R5

R4·R6 + 1
R6

)
C1 · C2

+
1

C1 · C2 ·R1 ·R6︸ ︷︷ ︸
c

= 0 (2.10)

The two solutions to the quadratic equation 2.10 are:

λ1,2 =
−b±

√
b2 − 4ac

2a
(2.11)

From equation 2.11, we see, that the two eigenvalues can only have positive real parts
(and the system thus unstable), if b would become negative. As this would represent
negative values for capacitors or resistors, this solution is not applicable. Therefore, this
system is stable for any transconductance g and/or voltage-divider ratio t.

2.3.3 Simulink Model

In the state-space analysis, we have neglected a bunch of very important factors. We
assumed the opamp as well as the mosfet to be ideal although these are highly non-linear
elements in real life.
So, there is need for a more detailed analysis of the whole system. We need to take
the non-linearities of the various parts into account. This was achieved partly using
simulink. The used schematic is shown in figure 2.3

The values of the capacitors and resistors are the same as we have built in our system.
For how we got to these values: see section 2.5.2
R7 models the ESR of C1 and is assumed to be 0.5 ohms.
With this model, we were much more flexible when analyzing the behavior of the system.
We were able to easily change resistor and capacitor values and we saw how the system
reacted.
We have seen that the system is stable in this model for a very wide range of capacitances
and resistors, we had to run the simulations with extreme values to get the system
unstable. Figure 2.4 shows the system response to a 12V input step. One can recognize
that the voltage gets very nicely limited to the desired value. With this configuration,
there is no overshoot visible.

This simulink model is much more advanced than the state-space model. However,
there are still better ways to investigate the system’s behavior, as the simulink models
still are not fully characterized. Therefore, we ran simulations using a SPICE simulator.

2.3.4 SPICE Model

We have used a SPICE simulator (microcap) to further investigate our system. We have
also used this program to determine the best values for the feedback-resistors and for the
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Figure 2.2: Simplified OVP-Circuit

Figure 2.3: Simulink Model
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other parts, so, the system got designed in an iterative process, using the simulations to
improve the behavior of our protection circuit.
Figure 2.5 shows the schematic used for analyzation. V6 is the representation of the
LM317. V5 generates a 12V input step. R7 is the ESR of C1.

With this tool, it was very easy to simulate different states of operation. In this
example, we have applied a 12V step input simultaneously to 8 inputs. This is much
harder for the system, as the inrush current is much higher and so, the system has to
react quicker.

Figure 2.6 shows the step response of the system to our input.

Green is the 12V input step. Red shows the Gate voltage of the mosfet. The blue
line represents the voltage at C1.
One can clearly see that the system behaves pretty good in this hard test. There is not
much overshoot and the reaction is nice and quick. This is what we expect from our
overvoltage protection circuit.

2.4 Microcontroller and Boost-Converter

As the Atlys Spartan-6 board from Digilent only provides a +3.3V regulated supply
at the expansion connector, we had to build a boost-converter on our interface-board
in order to generate a voltage of approximately 12V. This voltage is needed by the
overvoltage-protection circuitry. The boost-converter is controlled by an AVR-Controller
(Atmel ATtiny85) and has a small output power of approximately 360mW, however, this
is sufficient for the overvoltage-protection. The controller measures the output voltage
of the boost-converter (which is operating in the discontinuous-mode) and adjusts the
duty-cycle using a PI-controller to keep the output voltage stable.

The AVR is also connected to the Gate of the large MOSFET in the overvoltage-
protection-circuit. Thus, when an overvoltage situation happens, there is a voltage
greater than 1V at the Gate of the MOSFET as the MOSFET must open its channel.
This toggles a portpin of the controller and it will turn on a small piezo-buzzer that is
also built in the interface board. The user will therefore be notified when a probe is
attached to a excessive voltage and no resistors in the overvoltage-protection circuit will
burn as the user can quickly detatch the probes.

2.5 Building and Testing

2.5.1 Assembly

After we had analyzed our circuits, we have had to build the Interface Board. The
Layout was drawn using ,,KiCad”. The schematics can be found in the appendix.

We were not able to match the lengths of the signal paths or the impedances, but
with the expected frequencies and risetimes, this should not cause problems. The well
known rule of thumb for an second order system is given in equation 2.12. So an
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Figure 2.4: 12V Input Step

Figure 2.5: Microcap Schematic
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expected minimum rise time (tr) of roughly 2ns results in a maximum signal bandwidth
of fMax ≈ 175MHz. The wavelength correspding to tr is approximately λ ≈ ctr where
c is the speed of light in the given PCB material. For standard PCBs c is nearly 0.5 · c0
where c0 is the speed of light in vacuum. This gives λ ≈ 0.3m which is far above the
length mismatches of the traces on the PCB.

fMax =
ωMax

2π
≈ 2.2

tr
· 1

2π
(2.12)

The interface board is soldered with standard pinheaders to the wirewrap-expansion
board that provides enough FPGA-portpins for 32 channels.

2.5.2 Testing

After we had simulated our overvoltage protection circuit, we have also had to test it
with the real circuit. So, we equipped it with the values for the resistors and capacitors
we have found appropriate in our simulations. Therefore, we expected the circuit to
react stable to an overvoltage step input.
Which it did not.
It was a bit frustrating, we have tested our circuit very excessively, but in real life, it
just was not very stable with the simulated values, it was very easy to let it oscillate.
So, we began fiddling with the values of the resistors and capacitors on the PCB until
we got a stable system. These are the values we have used in the explanations in the
chapters before.
With these values, our circuitry is now stable to a variety of input conditions. Figure 2.7
for example shows the response of the system to a simultaneous step input to 8 channels
with 9V. Blue is the gate voltage of the mosfet and yellow the voltage at C1.

One can see that the system reacts stable.

We have also tried to get the system unstable in the simulations, but we had to
assume huge parasitic capacitances to get it unstable, we never have these values on our
PCB. So we think that the simulations proved wrong because they still do not model all
parameters of the components, an opamp is an extremely complicated circuit and even
the spice models can not be perfect. This is most probably why it never oscillated in
the simulations, but did so in real life.
But we have adjusted the values so that we now have a stable overvoltage-protection on
our PCB.
This was a very valuable experience, we have learned, that testing is very important as
no simulation can approximate the reality good enough.
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Figure 2.6: Step Response

Figure 2.7: System response of the real system
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Chapter 3

FPGA Design

3.1 Introduction

As BitHound uses Ethernet to communicate with the computer displaying the sampled
data, it needs an integrated microcontroller. This is due to the fact that the TCP/IP
protocol stack used in computer networks is too complex to be implemented in pure
hardware. The OpenCores website (www.opencores.org) lists more than 110 different
open source CPU projects, so there are plenty of cores to choose from. However some
of these are marked as unstable, or come only with an assembler but no C compiler.
After removing these cores, we’ve looked for architectures known to us because using a
familiar system usualy saves the time of getting to know to a new CPU and compiler.
So we were left with two candidates: the AVR-Core compatible with an AtMega103
from Ruslan Lepetenok and the OpenRisc1000. The first is an 8 bit microcontroller
whereas the second is a 32 bit CPU. Both are supported by the GNU Compiler Col-
lection (GCC). OpenCores also offers minsoc, an open source system-on-a-chip (SoC)
for OpenRisc1000 which would suit our needs quite well. However it needs considerably
more FPGA ressoruces than the AVR. Although it would fit into the Atlys’ FPGA, we
think the extra effort is not worth it. A quick examination showed that it might be
possible to port the system to similar boards with FPGAs as small as an XC6SLX16.
So the AVR was chosen because it is marked as stable, the architecture is well docu-
mented, a free C compiler is available and it requires rather few ressources. Note that
the project of Ruslan Lepetenok is a whole AtMega103 microcontroller rather than a
CPU alone. This doesn’t fit our needs as we need different IO modules than the ones
offered by the AtMega103. So we simply took out the CPU and embedded it into our
own system-on-a-chip. After choosing a CPU, a bus system had to be choosen for the
SoC. As we use other cores from OpenCores, like an Ethernet media access controller
(MAC) and a serial interface (UART), we’ve chosen the Wishbone bus as specified
by OpenCores (http://opencores.org/opencores,wishbone). A shared bus interconnect
following the Wishbone specification is available as well from the OpenCores website:
http://opencores.org/project,wb conbus.

http://opencores.org/opencores,wishbone
http://opencores.org/project,wb_conbus
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3.2 System On A Chip - SoC

The top level block diagram of the FPGA logic is shown in figure 3.1. The chosen AVR
CPU uses a harvard architecture with a total of three busses: programm, data and
input-output (IO). The programm memory is connected directly to the CPU whereas
the data and IO interfaces connect to multiple cores over separate Wishbone busses. The
whole SoC is clocked with 40MHz, this frequency was determined by a synthesis and
implementation run of the Xilinx ISE toolchain. As power consumption is not critical a
clock frequency as high as possible is desireable to get fast data transfer from the device
to the Ethernet MAC and therefore to the client software.

Figure 3.1: Block Diagramm of the SoC

3.3 Program Memory

3.3.1 Implementation

The programm memory of the CPU is implemented with FPGA Block RAM (BRAM)
devices. This BRAMs are preloaded with the AVR firmware upon FPGA configuration
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and never changed once the FPGA is running. Note that the CPU requires a combina-
torial program memory, however the BRAM devices of the FPGA contain a register on
the address lines. To solve this problem, the memory is clocked with an 180 degree phase
shifted, i.e. inverted, clock. This means that the BRAM updates it’s address register in
the middle of the CPUs execution cycle and then has half the period time left to send
the requested instruction towards the CPU. With this technique, the BRAM mimics a
pure combinatorial memory, however the achievable clock frequency decreases.

3.3.2 Initialization

To simulate the SoC, the program memory has to be preloaded with machine code for
the CPU. This requires the creation of initialization constants for the BRAM instances of
the program memory. To do this, Xilinx offers a tool called data2mem (Xilinx UG658).
It takes a Block RAM Memory Map (BMM) file and an executable elf file from the linker
to create the initialization constants.

The same tool can also be used to merge the preloaded BRAM data with the bit-
stream without re-running the synthesis and implementation tools. This speeds up the
firmware development considerably as running the synthesis and implemention takes
between ten and 45 minutes.

We created simple shell scripts for both use cases which can be found in the folder
named fpga. There are Windows and Linux versions of both scripts. In the Linux
version, the path to the data2mem tool has to be adapted to the actual install path of
the Xilinx tools. On Windows, the script has to be run from inside the ISE Design Suite
Command Prompt. The path to the executable (in elf format) has to be passed as the
first parameter for both scripts.

3.4 AVR To Wishbone Translator

This entity allows the AVR softcore to communicate with the rest of our SoC. This entity
converts the AVR specific data-and-IO-bus to standard Wishbone master interfaces. The
entity forms two Wishbone-interfaces, as we have to connect two busses from the AVR
to our System; the IO-bus and the data-bus.
The peripheral devices connected in the original AVR microcontroller answer within an
deterministic time and the bus therefore has no ,,wait” or ,,stall” signal. Unfortunately
this is the case with Wishbone where an Ack line signals the end of a transfer. So we
don’t know how many clock cycles a bus transfer will take until the slave has finished its
operations. Therefore, the CPU has to be stalled during an Wishbone transfer. Luckily,
the AVR softcore we’re using offers this functionality. The CPU has a cpuwait input
which halts the entire cpu. This is exactly what we need because now, as soon as the
AVR initiates a transfer on one the two mentioned busses, the entity stalls the AVR
until the transfer on the wishbone-side is finished.nWith this system, the changed bus
system is transparent to the CPU and therefore the firmware. Devices connected to
the wishbone busses can be accessed like normal AVR peripherals using the appropriate

http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_2/data2mem.pdf
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assembler instructions or C macros.
Another concern was the fact, that the CPU has only one 8-bit datapath for both busses.
Therefore, the translator has to multiplex the incoming data, depending on which bus
the transaction took place. The outgoing data is simply forwarded to both busses.
The IO-Bus has a 6 bits wide address and the data-bus a 16 bits wide address. Thus,
both wishbone-interfaces have each the same address-widths. Because the AVR has only
one 8-bit datapath, both wishbone-interfaces use 8 bits wide data busses.

3.5 IO Bus

The AVR IO bus has 6 address bits which results in an address space of 64 bytes. This
is not enough to map all peripheral devices to this bus as the MAC alone has an address
length of 11 bits on its configuration interface. Therfore, some peripherals are memory
mapped. The memory map of the devices connected to the IO bus is shown in figure
3.2.

Figure 3.2: Memory maps of IO and data bus
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3.5.1 UART

The universal asynchronous receiver and transmitter (UART) is a clone of the well
knwon 16550 UART, which is widely used among PCs and embedded systems. The core
was downloaded from the OpenCores website. It comes with it’s own documentation
which can be found in the directory fpga/uart. The serial receive and transmit signals,
and optionally the clear-to-send (CTS) – request-to-send (RTS) handshaking pair are
connected to the corresponding pins of the USB-to-UART IC on the FPGA board. This
allows for a communication between the PC and the firmware, to transmit debugging
information for example.

3.5.2 General Purpose Input Output - GPIO

For debugging purposes the LEDs on the FPGA board can be controlled by the firmware.
This is done via a simple GPIO controller. Furthermore it is possible to read back the
pushbuttons and switches on the board. Further it generates the slave select (SS) signals
for the SPI interface.

3.5.3 Serial Peripheral Interface Controller - SPI

A simple SPI controller from OpenCores (OpenCores simple SPI) is used to communi-
cation with external devices. Currently, it is used to control 6 shift registers (74hc595)
which drive 32 LEDs and an LCD-Display. The LEDs indicate the current state of the
32 sampling channels and the LCD displays the assigned IP-address. By using this ap-
proach, the firmware has full control over the LEDs and the LCD. The SS (slave select)
signals for the SPI interface are not created by this controller but by the GPIO.

3.5.4 Dummy Device

One speciality of the AVR architecture is that it forwards internal accesses to the hard-
ware stack pointer on its IO bus. In an AVR microcontroller from Atmel(r), the stack
pointer is modified via the IO bus. This is handled internally in our CPU core, how-
ever it still outputs the bus access onto the IO bus. This would cause an endless CPU
stall if no slave device ever acknowledges (Ack) the bus transfer on the Wishbone bus.
Therefore, a simple dummy device was implemented and mapped to the corresponding
IO address location. It simply generates an Ack for all incoming transfers without doing
any data processing.

3.6 Data Bus

The AVR data bus has 16 address lines so it can address up to 64kBytes of memory or
peripheral devices. The data bus was split into an 8 bit and an 32 bit section as the
CPU has an 8 bit interface while the MAC only supports a 32 bit wide bus. Therefore,
a bridge interface was created which forwards transfers from the 8 to the 32 bit bus.

http://opencores.org/project,simple_spi
http://www.atmel.com
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3.6.1 Data Memoy - SRAM

A 16kBytes large data memory is available to the system. It stores the CPU stack,
global variables, received Ethernet frames as well as Ethernet frames for transmission.
To get the highest performance of the available dual port block memory in the FPGA, the
memory is connected to both, the 8- and the 32 bit, busses. This allows the DMA masters
on the the 32 bit bus (the MAC and the dram controller) to access the sram concurrently
with the CPU on the 8 bit bus. As all the sampled data will be transferred over this
DMA channels, this is a rather time critical transfer. Therefore the 32 bit Wishbone
slave interface should be as fast as possible. For a single cycle transfer, a memory with
a pure combinatorial read access would be neccessary. This follows directly from the
Wishbone specification. However, the Block RAMs of the FPGA always have built-in
address registers. To save the extra clock cycle needed by the register, the Block RAMs
are clocked with an 180 degree phase shifted clock. This allows a single cycle access,
however, it effectively cuts the available cycle time in half. The same technique could
be used on the 8 bit interface too, however, timing problems arise when implementing
the design. This is due to the fact that the 8 bit side has to use an additional 1-of-4
multiplexer to map the internal 32 bit wide data interface to the 8 bit bus.

3.6.2 Wishbone Sump Interface

As a Wishbone bus is used as interconnection between the different modules on the SoC,
the logic-analyzer core needs a wishbone-interface in order to communicate with the
CPU.
The entire logic analyzer core is controlled with an 1 byte opcode and an optional data
value (4 bytes). Rhese commands, are used to ,for example, setup the trigger, the sam-
pling rate, the number of samples to take etc.
In the original implementation of the logic analyzer (Sump), these commands were trans-
ferred from the PC via UART to the analyzer. Now, with BitHound using only Ethernet
as the single interconnect to the PC, this isn’t the case anymore. All the commandsare
transferred via Ethernet to the firmware which forwards them in the appropriate form
to the wishbone sump interface.
Thus, we had to attach a Wishbone interface to the logic analyzer which gets the opcodes
and the data from the CPU and transfers them in the appropriate way to the analyzer.

This interface has 9 registers, each one byte wide. They can be accessed with the
Wishbone bus; One byte is for the opcode, 4 bytes are for the data field and 4 bytes
allow the firmware to read the current sampling channel states. Therefore, the address
port is 3 bits wide. As the Wishbone-bus is 8-bit wide, the CPU has to make 4 writes
to this interface in order to fill the 32-bit wide data signal.
Address 0 to 3 of the wishbone bus are for the four data-bytes. The single bytes will
be placed in the correct location in the 32-bit signal using little endian encoding. So
address 0 represents the least-significant byte and address 3 the most-significant. Note
that the AVR arcitecture is neither little nor bigendian per se as it is an 8 bit architec-
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ture, however the GCC compiler for AVRs defines a little endian sturcture for datatypes
larger than one byte. A write to address 4 will place the data into the opcode-byte.
As soon as this write is made, the interface asserts a special execute-signal to the logic
analyzer for one clock cycle. Then, the analyzer processes the data stored in the opcode-
and data-bytes and performs the appropriate actions. It is also possible to only access
the opcode-byte without writing to the data-bytes. In this case the data loaded with
the last command is used. The addresses 8 to 11 are read only locations which allow the
CPU to directly read the current state of the 32 sampling channels. This is used by the
firmware to display the channel states on 32 LEDs.
As the logic analyzer works with a different clock than the CPU, this interface performs
a clock-domain crossing. The data from the ,,slow” Wishbone-side has to be transferred
to the ,,fast” analyzer-side. This is achieved with registers. This works, because the two
clocks are phase synchronized as they are generated by the same PLL circuitry.

3.6.3 Wishbone 8 - Wishbone 32 Bridge

The Wb8Wb32Bridge entity groups four individual transfers on the 8 bit bus into one
transfer on the 32 bit bus. The two least significant bits of the address input from the
8 bit bus are used to group the four transfers. For a read cycle, the first transfer on the
8 bit bus, which has the two lowest address bits set to zero, causes a read on the 32 bit
bus. The address from the 8 bit bus is passed to the 32 bit bus. The result of this read
is stored in a register inside the bridge. Further reads which have two least significant
address bits not equal to zero are completed by the bridge without a transfer on the 32
bit bus. Write transfers store the data inside the bridge. The last write cycle, which
has the two least significant address bits set to 11, starts the write cycle on the 32 bit
side. As the AVR is an 8 bit architecture, it does not specify the endianess of word data
types. However the GCC C compiler uses little endian mode, so this bridge uses the
little endian format too. This creates some limitations:

• All accesses (read and write) to the bridge MUST be word aligned, i.e. the last
two bits of the data words address have to be zero.

• Only word transfers are possible, reading a byte or a halfword from the 32 bit bus
is not possible and may cause data corruption.

• The data has to be in little endian format: the least significant byte has the last
two address bits set to 00 and is transferred frist on the 8 bit side.

3.6.4 Media Access Controller - MAC

To use the Ethernet interface a media access controller (MAC) is neccessary. It takes
care of Ethernet package reception, (re-)transmission and does the frame checksum cal-
culations. Again, there are several projects on the OpenCores website to choose from.
We took the ethmac core (http://opencores.org/project,ethmac) because it is marked

http://opencores.org/project,ethmac
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as stable, has an integrated DMA module, a Wishbone interface and has been used in
commercial projects. The core comes with extensive documentation explaining all reg-
isters and features of the core. However, the core expects the data inside the memory
to be in big endian format while we use little endian throughout the whole project.
Therefore, the byte order of the master interface, which loads and stores data to and
from system memory, is reversed in hardware. This means that the least significant data
byte of the MAC is connected to the most significant data byte of the Wishbone 32 bit
bus and vice versa. Note that this endianess conversion could be done in software too,
however, this would create a lot of computational overhead which could decrease the
system performance.

3.6.5 Dram Controller - dramCtrl

The Atlys FPGA board offers a 1GBit DDR2 SDRAM chip from Micron Technology
Inc. which is used to store the samples. Compared to static RAM, the DDR2 SDRAM
interface is rather complex, so a special controller is needed. It has to take care of
various timing constraints, memory refreshing and a special startup calibration. Luckily,
the Spartan-6 devices offer so called Memory Controller Blocks (MCB) which perform
these tasks. The memory would allow bus speeds up to 400MHz, however, the MCB of
our device (speed grade -2) is limited to 312.5MHz so this bus frequency will be used.
The MCB has up to six individual data- and command-FIFO ports which mask the
complexity of the connected RAM chip. To use the MCB, an IP-Core has to be created
in the Xilinx ISE design suite using the coregen utility. Inside our design, the entity
dramCtrl (dramCtrl.vhd) is the interface between the MCB and the sampling core as
well as the microcontroller system. It uses two 32 bit ports of the MCB, one to store
the samples arriving from the core, the other to transfer the memory contents to the
microcontrollers data memory.

Interface to the sampling core

The interface towards the sampling core is straight forward, it consists of three signals:

• ClkxC : input : 1 bit

• DataxDI : input : 32 bits

• WritexSI : input : 1 bit

ClkxC is the clock signal for the sampling core, it is running at 100MHz. DataxDI is
the sampled data from the core which will be stored into the memory if WritexSI is
high during a rising edge of ClkxC. WritexSI might be assigned high at any time, the
bandwidth of the memory interface is high enough to store samples arriving at every
ClkxC edge as to following calculation shows:
The DDR2 memory is clocked at 312.5MHz and has a bus width of 16 bits. Because both
edges of the memory clock are used, this yields a throughput of 312.5 MSamples/s. This
is well above the 200 Msamples/s generated by the sampling core which runs at 200MHz
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Precharge (tRP) 12.5ns

Autorefresh (tRFC) 127.5ns

Activate (tRCD) 12.5ns

Total Refresh Time 152.5ns

Refresh Interval 7800ns

Table 3.1: Selected Timing Properties of MT47H64M16-25E DDR2 SDRAM

clock frequency. The bandwidth overhead needed for row activation and precharging
doesn’t play a significant role here as we write data perfectly in order, with incrementing
addresses. So, while one bank is precharged, the seven other banks of the memory can be
written. Another simple calculation shows the bandwidth needed to periodically refresh
the memory. To perform a refresh the banks have to be precharged, an autorefresh
command has to be executed and the needed bank has to be opend again. The timings
for these commands as given in the datasheet are listen in table 3.1. The resulting total
refresh time of 152.5ns takes about 1.96% of the 7800ns long slot between two refresh
cycles.
The sampled data arriving on the interface is first put into a FIFO of the MCB, the
number of samples currently stored in the FIFO is counted by the dramCtrl entity.
Once a threshold is reached, a write command is sent to the command FIFO of the
corresponding MCB port which starts the data transfer from the write FIFO to the
actual memory device. Generating an individual write command for each sample is not
possible as the write FIFO is 64 samples long whereas the command fifo can only store
4 commands. A threshold of 8 words was choosen as compromise. During the 152.5ns
long total refreshing time of the memory, up to 31 samples might arrive from the logic
analyzer. This is well below the capacity of the data FIFO so a sufficient security margin
is available.

Interface to the microcontroller subsystem

Once the samples are stored in the memory, they will be sent via Ethernet to the client
software on the PC. To build the necessary packet for the network transfer, the samples
have to be copied from the DRAM to the data SRAM of the microcontroller subsystem.
To offload the cpu, this is done by direct memory access (DMA). Therefore, the dramCtrl
entity has two 32 bit wide bus interfaces, which both follow the Wishbone specification,
which is used throughout the whole microcontroller system. The slave interface receives
configuration information from the microcontroller, the master interface transfers the
samples from the dram to the Wisbone bus.

Configuration Port (Slave) The slave port provides read- and write access to 5
registers which control the DMA transfer. All accesses to the slave port have to be 32
bits wide, byte or halfword accesses are not supported. For 5 registers 3 address bits are
needed, these are the address bits 4 down to 2 of a byte-addressed system. An overview

http://opencores.org/opencores,wishbone
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Name Address Bits 4..2 Offset in Bytes Read/Write

Config and Status 000 0 r/w

Source Address 001 4 r/w

Destination Addr 010 8 r/w

Transmit Length 011 12 r/w

Sampling Pointer 100 16 r only

Table 3.2: dramCtrl Configuration Registers

Bit Read/Write Name Description

31..4 – unused write 0, read as 0

3 r/w Err-Flag Set when a wishbone bus error is detected
during a DMA transfer.

2 r/w Done-Flag Set when the requested transfer is finished
(Transmit Length has reached 0)

1 r/w IE-Flag Interrupt output is set when IE-Flag is
high and Done- or Err-Flag is high

0 r Busy-Flag Goes to high during a transfer, automati-
cally cleared when transfer is done

Table 3.3: dramCtrl status register bits

of the registers is given in table 3.2.
A transfer is set up by first writing the source and destination addresses. The source
address referes to the DRAM, the destination address to the address on the wishbone bus.
Afterwards the number of transfers to be execute is written to transmit length register.
This automatically starts the DMA engine. Both address registers are autoincremented
with each successful word transfer, the length register is decremented until it reaches
zero. When the transfer is done, an interrupt might be generated depeding on the IE
Flag in the configuration register.

Configuration and Status Register Currently this register implements the four
configuration and status flags listed in table 3.3.
The interrupt output is high as long as either the Err-Flag or the Done-Flag and IE-Flag
are high. The Err- and Done-Flags are set by hardware and can be cleared by writing a
1 to the corresponding bit location. They can’t be set via the Wishbone bus.

Source Address Register This register holds the DRAM byte address of the next
data (i.e. analyzer sample) to be transferred over DMA. This is a pointer in the DRAM
address space. It is 27 bits wide to address the 128MByte long sampling memory. The
unused bits should be set to zero. The counter overflow for autoincrement is handled
correctly in hardware, meaning the register goes from 0x07fffffc to 0x00000000. The
source address has to be word aligned, which means the lower two bits have to be zero.
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Therfore they are hardwired to zero, i.e. they can’t be written to 1.

Destination Addr Register This register holds the destination address where the
transfered data will be stored, so it is in the Whishbone address space. The DMA module
does not support unaligned transfers so the destination address has to be word aligned.
Therefore the lower two bits of this register are hardwired to 0.

Transmit Length Register Writing this register immediately starts the DMA trans-
fer. The source and destination address must be valid once this register is written. Every
successful word transfer decrements this register by one. So the register takes the num-
ber of words to transfer, not the number of bytes. Once the register is set to a value
other than zero, it should not be rewritten until all DMA transfers are done.

Sampling Pointer The sampling core uses the dram as a ring buffer. This register
holds the dram address that will receive the next sample. The value of this register is
needed to calculate the source address of a DMA transfer. Note that this register is
read-only, the sampling pointer can’t be modified by the firmware. Only a hardware
reset clears the sampling pointer to zero.

3.7 Sampling Core

The Sampling Core is the actual logic analyzer itself. Some parts of this module have
been taken over from the original Sump design. However, most parts have been rewritten
to adapt it to its new surrounding and to improve the clock performance. To allow higher
sampling rates, a new, more flexible trigger was implemented. The block diagram of the
original implementation of the logic analyzer can be found in the Appendix. All we are
using from this design is the ,,core” module. This is the heart of the whole analyzer; it
offers a configurable trigger, synchronization logic and a simple glitch filter.
The core also contains a decoder which decodes the opcode and forwards the commands
and control data to the correct modules so they get correctly initialized.

3.7.1 Decoder

This module decodes the opcodes sent by the firmware by using a rather simple demul-
tiplexer. The incoming opcode is decoded into a variety of enable signals. These signals
are used to control the sampling cores configuration registers. It therefore defines the
meaning of the numerical opcodes used in the firm- and software. It further implements
a register to store configuration flags which modify several core functions, like sample
clock source or glitch filter.

3.7.2 Trigger

The trigger consists of a configurable number of identical, independent, chained units.
The units can be configured by the firmware using 5 registers. The select unit register is
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used to specify which unit is configured by the other four. The default implementation
has 8 units, the first one has the index 0. Each unit consists of a compare block, chaining
logic, a delay counter and fire logic. To allow high sampling rates, each unit is pipelined,
therefore several samples are processed simultaneously by each unit. The basic diagram
of one trigger unit is shown in figure 3.3. The registers at the outputs of the unit are
clocked by the sample clock and allow a series connection of any number of units. As
the samples are processed in a pipelined manner, the fact that the units are serialized is
hidden from the user.
After a reset, the trigger is in an idle state and can be configured by the firmware. When
the trigger receives the arm signal from the firmware, it changes to an active state and
monitors the samples. Reconfiguring the trigger in the active state is possible but highly
discouraged. Once the trigger has fired, it has to be resetted using the reset command
before it can be rearmed again. For more details about the configuration protocol please
see the according section 4.6.2 in the firmware chapter.

Figure 3.3: Basic blockdiagram of one trigger unit.

Compare Block The compare block can be configured to either parallel or serial
mode. In parallel mode, it compares all channels with a configured match value, i.e. one
bit per channel. Additionally, there is a bit mask which specifies the channels that should
be checked. All channels with their corresponding bit set to 1 in the mask are checked
against the match value. In serial mode, the function of the mask and match value are
the same, however, the 32 input channels are replaced by the 32 last values sampled
on one of the channels. The monitored channel can be selected using the configuration
register of the unit. If a match occurs, the compare block sets its output to 1, otherwise
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it is 0. The Not-Flag in the configuration register of the unit allows it to invert the
match signal, i.e. a match occures every time the specified condition is not fulfilled.

Match Chaining Logic Following the Compare Block, there is a block which allows
an wired-AND like combination of adjacent units. If the Chain-Flag of a unit is set, it
can only fire the trigger if it matches at the same sample as the precedent unit. This
allows it to trigger if two independent conditions are met simultaneously, for example to
trigger on a falling edge on channel 0 while channel 1 is on ’low’ state. Any number of
units can be chained given that there indexes are next to each other, e.g. units 0, 1, 2
and 3. Note that it makes no sense to set the Chain-Flag of unit 0 as it has no preceding
unit. Therefore the Chain-Flag of unit 0 is hardwired to 0.

Delay Counter and Fire Logic Using the delay counter, it is possible to delay
the chained match signal before the Fired output goes high. The counter width is
configurable, the default is 16 bits which allows a signal delay of up to 65535 sample
times. When the configured delay has passed, the following OR-gate and register go
to high state. If the Fire-Flag is set this rises the Fired output regardless of the Fired
input. This second OR-gate allows multiple match chains to be ORed into one Fired
signal.
Note: at least one has to have the Fire-Flag set. If not, the trigger will never fire,
regardless of the input data. The logic analyzer and the client therefore wait for ever.
This situation can be cleared by resetting the core.

Next Level Flag Trigger units can be arranged in increasing levels which influences
the activation of the units. If a unit has the Next-Level-Flag set, this and the following
units are on the next level compared to the preceeding one. When the trigger is armed,
only units on the first level get activated. Once one of these units asserts the Fired
signal, all units of the very next level become active. Please note that the sample firing
the lower level is also processed as the first valid sample on the next level.
The Fired signal of the last level starts the sampling process of the analyzer core. This
happens regardless of the number of units configured by the software as the units are
transparent to the Fired signal in the default configuration.

Trigger Unit Registers There are four registers for each trigger unit:

• Mask

• Match Value

• Configuration

• Delay

The first two are used by the compare block, the last one specifies the match delay. The
configuration register holds the flags which configure the unit, as well as the analyzer
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Bit Name Remarks

31..13 unused reserved for future use, set to 0 when writ-
ing the register

12 Fire-Flag

11 Next-Level-Flag

10 Chain-Flag

9 Not-Flag

8 Serial-Flag

4..0 Serial Channel Analyzer channel for serial mode, these
bits are don’t care when Serial-Flag is 0

Table 3.4: Trigger unit configuration register bits

channel used by the compare block in serial mode. The bit positions of the various flags
inside the Configuration Register are given in table 3.4.

3.8 System Timer

The firmware needs some kind of clock as some of the protocols in the TCP/IP stack
make use of timeouts. Therefore, a rather simple module generates a periodic interrupt
at a fixed rate of 100Hz. This is used by the firmware to implement the needed system
tick timer.

3.9 Clocking and Reset

The hardware has a 100MHz crystal oscillator on board. This clock is fed directly into
the phase locked loop (PLL) of the memory controller block (MCB). This is required by
the MCB core generated by the Xilinx Coregen. This PLL creates the necessary DRAM
clocks, a so called startup clock used inside the MCB and a selectable user clock for the
remaing system. This user clock is fed into a clock managment core generated by Xilinx
Coregen which produces the differential 40MHz SoC clock and the 200MHz base clock
for the sampling core. According to the Xilinx documentation, the startup clock has
to be between 50MHz and approx 100MHz, no specification is made for the user clock.
However, an implementation run with the Xilinx toolchain showed, that timing errors
arise when the startup clock and the user clock have different frequencies. Therefore,
the startup and the user clock are set to run at 62.5MHz which is one tenth of the PLL
oscillator frequency. Note that the MCB needs a clock at twice the DDR2 interface
frequency, so the PLL oscillator runs at 625MHz.
The reset signal propagates in the same way as the clock signal. A reset request from
the push button resets the MCB and its PLL which negates the ready output. This
resets the second clock management core which in turn disables its locked output. This
finally resets all the logic inside the FPGA.
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Firmware

4.1 Introduction

This chapter covers the most important aspects of BitHounds firmware. It gives a
general introduction of the firmware files and what they do. For details about the
various functions implemented in these modules please see the source code, it is fully
commented.
As with the FPGA design, some opensource code got reused to speed up the development
and improve the reliability. The whole firmware is written in C and was compiled using
avr-gcc 4.3.3 from the WINAVR 20100110 package. However other versions or even
compilers from different vendors should work too.
For the handling of the IP, ARP, ICMP, TCP and UDP protocols, the uIP stack from
http://www.sics.se/˜adam/uip/index.php/Main Page is used. AVR Studio 4.18 from
Atmel ( AVR Studio website ) was used as development environment, however, a separate
Makefile for Linux is available as well.

4.2 Ethernet - eth.c

This module uses the MAC hardware to control the reception and transmission of data
packets over the Ethernet interface. The upper 12kBytes of the microcontroller’s data
memory are used as ethernet buffers. Each buffer is 1536 bytes long which is the max-
imum size for an ethernet frame. This gives a total of 8 frame buffers. The module
manages this buffers, it keeps track of data lengths as well as transmission and reception
status. Four of these buffers are used for reception and transmission, the other four
are used exclusively for transmission. We’ve chosen this configuration because the logic
analyzer sends much more data than it receives. This is due to the fact that we only
receive configuration data but we have to send back all the sampled data, which is up
to 128MBytes.
The module also performes the neccessary configuration of the MAC and the physical
layer hardware (PHY) after reset. For the MAC, the available buffers, interrupt settings
and the device’s MAC address are set. Please note that the board has no MAC adress

http://www.sics.se/~adam/uip/index.php/Main_Page
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=2725
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device. A fixed MAC address is therefore compiled into the firmware. It is therefore not
possible to have two BitHounds connected to the same broadcast domain at same time.
If you need this you have to alter the MAC address of one of your BitHounds in eth.h,
recompile the firmware and copy the firmware into the bitstream. See section 3.3.2 for
a more information.
Further the default PHY configuration is altered to disable the Gigabit Ethernet sup-
port. This is neccessary as the PHY might autonegotiate to Gigabit Ethernet al-
though the MAC does not support it. Please note that the datasheet of the Marvell
88E1111 PHY on the FPGA board is confidential. It can be requested from Marvell
(http://www.marvell.com) once a nondisclosure agreement has been signed. Therefore,
we unfortunately can’t provide the datasheet along with the project.

4.3 UART - uart.c

The serial interface hardware (UART) is used for debugging purposes. Although it
offers a bidirectional communication channel, until now, the firmware does not process
any data received via the UART. However, it transmits various status and debugging
information. There header file defines a FILE structure named mystdout which can be
used to reinitialize stdout. This allows it to use C standard IO functions like printf.
See function main() in file main.c for an example. However, please note that AVR
architecture has to copy static strings into the data SRAM at application start. This
is rather inefficient as constant strings can be stored in the much larger program ROM
as well. This done using the PSTR() macro and library functions with a P suffix like
printf P. Again examples can be found in main.c and other source files. To speed up the
printing functions an internal ring buffer is used to store output data until the UART
is ready to transmit it. However, excessively using debug outputs may significantly
decrease system performance. So many debugging outputs are commented in the source
code, they can be reenabled and compiled in when needed.
The default configuration for the UART is 115200 baud, 8 data bits, 1 stop bit and no
parity.

4.4 uIP Stack - uip.c

Processing data packets of the TCP/IP protocol familly can be a rather complex and
challening task. Luckily, several open source TCP/IP protocol stacks for microcon-
trollers exist on the internet. After a web research, the uIP stack written by Adam
Dunkels from the Swedish Institute of Computer Science was chosen. Mainly because
it is RFC compliant, has already been implemented on AVR devices, has an extensive
online documentation and comes with various example applications.

http://www.marvell.com/
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4.5 DHCP Client - dhcpc.c

Most modern Ethernet networks use the Dynamic Host Configuration Protocol (DHCP)
to assign IP addresses to network devices. This greatly simplfies the address management
in the network. Therefore, BitHound integrates a DHCP client in its firmware. The uIP
stack already comes with a dhcp client. However, this client makes use of a special socket
library called Protosockets (http://www.sics.se/˜adam/uip/uip-1.0-refman/) included in
the uIP project. Due to code size limitation, this library is not used in the firmware.
So, some modifications were made to the original client to integrate it.
When a UDP packet was received, the stack calls the high level application (see 4.6)
which forwards the call to the DHCP client if no IP address was received so far. Once an
IP address was received from the DHCP server, the client calls a function implemented
in main.c to register the new address with the stack. The client tries several times to
obtain an address. If all attempts fail, the client gives up after approximately 20 seconds.
It then calls the main program which sets 10.0.0.2 as a default IP address. This makes
sure that the logic analyzer is useable without a DHCP server in the network. However,
the client has to use an IP address in the same subnet, i.e. the client’s IP address has
to start with 10. too.
When an address was received or the default address was set BitHounds IP is shown on
a LC display so the users knows the device is ready to use.

4.6 High Level Application - app.c

This module handles the communication between the client software and the sampling
hardware. It receives calls from the TCP/IP stack if new data has arrived or an event
like a timeout has occured. The received data is parsed, decoded and possibly forwarded
to the sampling hardware.
The transfer of control information is done over a Transmission Control Protocol (TCP)
stream between the client software and the firmware while the transfer of sampling data
is based on the User Datagram Protocol (UDP). This is due to the fact that UDP
requires far less computational overhead to create a datagram and therefore speeds up
the transfer. The drawback is that UDP datagrams might get lost in the network or on
the receiving PC. Therefore, the communication protocol offers a method to request the
retransmission of a lost datagram.

4.6.1 Advertisement Broadcasts

When the logic analyzer firmware was configured and has received an IP address, it
starts to send so called advertisement broadcasts to the network. This UDP datagrams
are sent once every second and contain general information about the logic analyzer.
The client software receives this broadcasts to find the analyzer in the network, so
the user doesn’t have to know the IP address of the analyzer. The UDP destination
port number used by the firmware has to be known by the client. Therefore, this is a

http://www.sics.se/~adam/uip/uip-1.0-refman/
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fixed constant which can be changed by recompiling the firmware. We chose a default
value of 1024. Please note that port number 1024 is marked as reserved by the Internet
Assigned Numbers Authority (IANA, http://www.iana.org/assignments/port-numbers).
We therefore assume that no other service in the network uses the same port which might
cause communication problems. This might not be the best solution, however, we think
it is the best possible as registering a sepcial port with IANA would be too complicated
for this project. If problems are encountered due to selection of this port number, it
could be easily changed by editing the define statement in app.c and recompiling the
firmware.
The structure of the Advertisement Broadcast is given in figure 4.1. All numeric fields
are in network byte oder, i.e. in big endian. The graphic also shows the values sent
by our implementation. The datagram also contains information about the hardware
which can be used by the client software. This allows a greater flexibility as the client
software doesn’t have to contain compiled-in information about hardware properties. A
descriptions of these fields follows.

Magic Name This is a fixed constant of six bytes containing the string SumpLA in
ASCII encoding. The client MUST check this field against the given constant. If it does
not match, the datagram MUST be ignored. The idea of this is to reduce the risk that
datagrams generated by other services on the same port in the network are mistaken as
advertisement broadcasts.

ID Code This is the ID code of the logic analyzer. It is the same value as used in the
communication protocol ID command (see 4.6.2). It specifies the highlevel communica-
tion protocol used by the device. The current version is SLA2. Note that SLA0 and
SLA1 are incompatible protocal versions of the original Sump analyzer design based on
a serial UART interface.

Port This is the port number where the logic analyzer listens for incoming TCP con-
nections. This connection is used to transfer control commands from the client software
to the firm- and hardware.

IP Address This is the IP version 4 address of the logic analyzer.

Sample Memory Length The total number of samples which can be stored in the
sample memory of the logic analyzer.

Channels The number of hardware sampling channels. This also defines of how many
bytes one sample consists.

Base Frequency This is the sampling core base frequency in MHz. This is the max-
imum sampling frequency if all channels are used. Note that the effective sampling
frequency of the logic analyzer can be doubled if only half the channels are used.

http://www.iana.org/assignments/port-numbers
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4.6.2 Communication Protocol: Firmware – Software

The communication protocol of the original Sump logic analyzer design was adopted and
extended to fit the new design. Each command consists of a one byte opcode followed by
an optional 4 byte data word. The most significant bit of the opcode, when set, indicates
that a data word follows.

Short Commands

These are commands without additional data.

Reset – 0x00 This command resets the sampling core hardware, i.e. trigger, sample
counter, etc. Sending the command five times ensures the firmware state machine rec-
ognizes it as opcode in case the first four resets are interpreted as data portion of a long
command.

Arm – 0x01 The firmware prepares the UDP socket for data transfer and starts the
sampling core. Note that the trigger is not armed immediately after the command. First,
the requested number of pre-trigger samples is taken. The hardware then automatically
arms the trigger. Once the trigger tripped, the requested number of post-trigger sam-
ples is copied into the sample memory. When this is done, the hardware generates an
interrupt and the firmware starts sending the sampled data to the client software.
Note that this command has to be the last one for a measurement. Any command other
than Reset or Id is ignored between arm and the end of the data transfer to the client
software.

Id – 0x02 The client uses this command to check the protocol version and the status
of the logic analyzer. If the client was granted hardware access to the analyzer, the
firmware responds with the same Id code given in the advertisement broadcast. For the
protocol version documented here, this is the string SLA2, the left character is sent first
over the TCP connection. If the analyzer is already in use by another client connection,
the error code ERR0 is returned instead.

Long Commands

These commands consist of five bytes: one opcode followed by 4 data bytes. The data
field is a 32 bits long unsigned integer transferred in little endian byte order.

Set Divider – 0x80 Sets the core’s sampling frequency to Fbc/(x + 1). Fbc is the
sampling core base clock as reported in the advertisement broadcast and x is the data
value of the command. The actual value of Fbc in our design is 200MHz.
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Please note that the hardware divider is actually 16 bits wide, so divider values grater
than 0xffff are not possible. This fact is taken care of by the client software.

Set Flags – 0x82 Sets hardware flags which configure the sampling core. This com-
mand works the same way as in the original Sump logic analyzer, see
http://www.sump.org/projects/analyzer/protocol/ for details.

Set Forward – 0x83 This command configures how many samples are copied into
the sampling memory once the tigger has tripped.

Set Backward – 0x84 This command defines how many bytes are taken before the
trigger is started. The delayed start of the trigger ensures that the requested amount of
pre-trigger samples has been stored in the sampling memory. Together with Set Forward
this command allows to set the number of samples to take and the trigger position within
this length.

Set Dataport – 0x85 This configures the destination port number to which UDP
datagrams with sampled data will be sent. The source port of this datagrams is the
same as the destination port. Note that although the UDP port number is a 2 byte
value this command has a 4 byte long data field. This is to simplify the control stream
decoding. The two most significant bytes are ignored and should be set to zero.

Resend – 0x86 This command requires that arm was executed previously. It allows
the client to request the retransmission of a data datagram which got lost. The data field
of this commmand specifies the number of the first sample in the requested datagram.
Only one datagram is sent in response to this command, if the client has missed more
than one datagram it has to repeat the command for each datagram.

Select Trigger Unit – 0xC4 The trigger consists of several (default: 8) identical
units. To keep the number of opcodes need at a fixed value even if the number of
units is changed only can be configured at a time. By executing this command the unit
specified in the data field is selected to be configured by commands 0xC0 .. 0x0C3.
The selection is valid until the command is executed again or the Reset command is
executed.
The counting of units starts with zero, so zero is the first valid index. If the data value
is bigger than the index of the last unit (default: 7) it gets masked, i.e. it is mapped to
a valid unit. The value has to be placed in the data fields least significant bits.

Set Trigger Mask – 0xC0 Writes the passed data value into the selected trigger
units Mask Register. For more details about the trigger see section 3.7.2.

Set Trigger Value – 0xC1 Writes the passed data value into the selected trigger
units Value Register. For more details about the trigger see section 3.7.2.

http://www.sump.org/projects/analyzer/protocol/


4.7. MAIN PROGRAM - MAIN.C 35

Set Trigger Configurations – 0xC2 Writes the passed data value into the selected
trigger units Configuration Register. For more details about the trigger see section 3.7.2.

Set Trigger Delay – 0xC3 Writes the passed data value into the selected trigger
units Delay Register. Please note that this register has a configurable length (default:
16 bits). The value has to be stored in the data fields least significant bits. For more
details about the trigger see section 3.7.2.

4.6.3 Sampled Data Transfer

When the hardware has finished sampling, the firmware sends the sampled data to the
client software. This is done using UDP datagrams. Each datagram contains up to
a fixed number of samples, 360 in our case. This is determinded by the maximum
transfer size of an Ethernet frame (1500 bytes data payload) minus the size of IP and
UDP headers. The UDP destination port to which the datagram will be sent can be
configured, see 4.6.2. The client’s IP address as given by the TCP connection is used as
destination address. Therefore, it is not possible to have a fFirwall or Router performing
Network Address Translation (NAT) between the PC running the client software and
the hardware. This however is not a very realistic scenario anyways as a local measuring
device is hardly ever remote controlled over, e.g. the internet. The use of NAT inside a
local network is very uncommon.
The structure of such a datagram is shown in figure 4.2. All values in the datagram are
in little endian byte order. This is because the original Sump design is in little endian
too. The sample index field in the datagram is the index of the packet’s first sample
in the record. This field always starts with zero in the first datagram and increments
with the number of samples sent per datagram. Note that the samples are counted and
not the bytes. This field allows the client to insert the packet into the correct positon
in its sample buffer. The length field gives the number of samples transmitted in this
datagram. This length allows to check the datagram for its completeness because given
on the number of samples the total number of payload bytes can be calculated and
compared to the number of bytes received by the client software.

4.7 Main Program - main.c

This module does general low level tasks like hardware initialization. It implements
the main loop which exchanges frame buffers between the Ethernet Module and the
TCP/IP stack. It further implements a system tick counter needed by the stack to
measure timeouts.
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Figure 4.1: Format of Advertisement Broadcast Datagram

Figure 4.2: Format of Sampling Data Frames



Chapter 5

Client Software

The client software manages the visual presentation of the sampled data and implents
the graphical user interface (GUI) to control the logic analyzer.

The original client software of the Sump logic analyzer was modified and improved in
many ways to work with the new Ethernet interface of the logic analyzer. It also offers
new features compared to the original sump-design to make use of the longer sample
memory: any numbers of markers (vertical lines) can be placed and removed on the
waveform, these cursors can be centered on the screen to easily jump between relevant
positions. Another new feature allows to center the next edge of a selected signal. This
allows it so easily jump over ,,idle” where signals do not change without zooming out
and in again.

5.1 Trigger

To cope with the new trigger system of the ,,BitHound”, the GUI was also renewed
regarding the configuration of the trigger units. They can easily be configured with a
matrix of checkboxes that allows a simple yet powerful set-up and combination of the
units. This new trigger-configuration makes way to complex trigger-schemes, with this,
it’s easy to extract even sophisticated signal conditions out of the waveforms.

The trigger offers a ,,simple-” and an ,,advanced-” mode. In simple-mode, the user
can set the trigger to fire on a rising or falling edge on any channel. This allows a quick
set-up of a simple trigger condition.

In advanced-mode, all features of the trigger can be configured. Currently, the trigger
offers 8 individual stages that can each have its own configuration. These stages can
then be interconnected to form the complete trigger.

Each stage can either be set to parallel- or serial mode. In parallel mode, all channels
are compared against a user-definable value. (the channels can also be masked). If this
comparison is correct, the stage fires. In serial mode, the data of one user-selectable
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channel will be shifted serially. Then, the software compares this stream of data with
a user-definable mask. If the stream matches the mask, the stage triggers. In the GUI,
the data is shifted from the LSB to the MSB, from right to the left.

Once the desired stages are configured, they can be connected. This is done with a
PAL-like matrix. (PAL = simple (and outdated) logic device). The individual stages
can be AND- or OR-connected. This means that the sampling starts, when this logical
stage-interconnection is ,,true”. E.g. if stage 0 AND stage 1 have fired, then the sampling
starts. The trigger-stages can also be armed by a certain trigger-condition. E.g. when
stage 3 fires, it arms stage 4. Unless a stage is armed, it won’t fire. If no special leveling is
specified, all stages are armed. The different trigger-levels are highlighted in the matrix
with an individually colored background.

5.2 Diagram

When the BitHound has transfered its captured data to the PC client, it will be displayed
in the main screen.

Various tools allow an analysis of the waveforms. By clicking on the screen, a cursor
appears. In the bottom-left screen, it displays the time-position of this cursor in the
diagram. By clicking, holding and moving the cursor, the relative time-position as well
as the corresponding frequency is also displayed in the bottom-left of the screen. This
makes it easy to measure times and frequencies.

There are several tools like ,,add marker”, ,,remove marker”, ,,go to next/previous
marker” and ,,go to next/previous edge” that are self-explanatory. By clicking on a
channel, it gets highlighted and the ,,go to next/previous edge” feature will focus the
display to the next/previous edge of this selected channel. Markers can be removed by
setting the cursor on the marker and clicking the ,,remove marker” button.

5.3 Code

In the following, the different and relevant java-files are presented.

5.3.1 DeviceController.java

This class creates the GUI dialog which is used to control the analyzer, especially the
trigger. Larger changes have been made in this file to implement the new trigger scheme
and to improve the usability.

The sampling-rates were adapted to the faster hardware, sampling rates of up to
400MHz are now possible. Together with the recording size (number of samples to
take), the GUI now also displays the total sampling-time.

The Trigger-configuration has been made much more intuitive and easier to config-
ure, see above for details.
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This file also controls the entire trigger-stage-handling. It generates the interconnection-
matrix, enables or disables the checkboxes according to the settings and also highlights
the background if different trigger-levels are selected. It also generates a text-string that
represents the trigger-stage-interconnection.

5.3.2 Device.java

This class communicates with the firmware using TCP and UDP sockets. For the recep-
tion of the UDP datagrams containing sampled data, a second class called UdpReceiver
is implemented in the same source file. This class uses its own thread to receive the
datagrams from the socket passed to its constructor. The received datagrams are in-
serted into a linked list without any processing. The thread executing the run method
of the Device class takes the datagrams and processes them. It is necessary to use one
thread exclusively for datagram reception as datagrams are not stored by the operation
system. This means that any datagram arriving while the application stores the last one
is lost. Therefore, the time between two calls to the sockets receive method must be as
short as possible.

There were also changes made regarding the trigger configuration, as the trigger
scheme has greatly changed since the original ,,sump”-design.

5.3.3 Diagram.java

This class renders the waveform on the screen to display the samples. A few methods
were added to this class to implement the new features like markers or cursors. Also,
various features like zooming were improved a little.
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Chapter 6

Conclusion

During the last few months, we have succeeded to design, build and improve the logic
analyzer according to our ideas and requirements.

During the improvement, we were able to rise the maximum sampling clock frequency
from 200MHz to 400MHz. We were able to achieve this by greatly altering the trigger
of the ,,BitHound” - it is now much more flexible and faster than before. The GUI was
also adapted to fit the new trigger; its configuration is now much more intuitive.

We have also built a body for the device that holds the ATLYS-Board, our interface-
board, the channel-LEDs as well as the LCD display.

In the design process, we have recognized that some aspects of the system could be
improved in the following way:

PC Client The functionality GUI could be extended: pattern search, an UART or
USB protocol decoder could be added. The buffer handling of the client could also
be implemented a bit better. This would result in a better, and probably faster, data
transmission.

Gigabit Ethernet At the moment, the system is configured for 100MB Ethernet
transfer speed. This could be improved to Gigabit Ethernet to even further speed the
transfer of the sampled data up.

The entire project was a very valuable experience for us as we were confronted with
many different problems and situations that required further analysis and investigation
to find a suitable solution. The problems were also very widespread, we had to deal with
FPGA-specific stuff, network protocols and traffic analysis, as well as with analog and
digital control loop design.

In the end, we think we have come up with a useful tool that can be used to solve
many different problems in engineering situations.
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Chapter 7

Appendix

7.1 Tools required

• Atlys Spartan-6 FPGA-Board (or similar Spartan-6-board).

• Xilinx ISE (Windows/Linux) or similar software for a Spartan-6.

• KiCad (Windows/Linux) or similar schematic/layout editor.

• PC running Java (PC-client-software, Java-based, Windows/Linux)

• The PC client was developed with Eclipse

• Interface Board (build one yourself)

7.2 Schematics

The schematics of the Interface Board are presented in the following.

Figure 7.1 shows the top-level hierarchy-sheet of the schematic showing all compo-
nents.

Figure 7.2 shows the overvoltage protection circuitry.
Figure 7.3 shows one input connector (8 channels) as well as the resistors and diodes

needed for the overvoltage-protection-circuitry. On the Interface board, 4 such modules
are implemented.

Figure 7.4 shows a level shifter. 2 of these are implemented on the Interface Board.
Figure 7.5 shows the connector on the Interface Board. It connects this board with

the wirewrap expansion-board.
Figure 7.6 shows the Mikrocontroller and the boost-converter.

7.3 Interface Board - Layout

Figure 7.7 shows the layout of the Interface Board.
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Figure 7.1: Top-level schematic sheet



7.3. INTERFACE BOARD - LAYOUT 45

Figure 7.2: Overvoltage Protection

Figure 7.3: Input stage
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Figure 7.4: Levelshifter
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Figure 7.5: Connector

Figure 7.6: Microcontroller and boost-converter



48 CHAPTER 7. APPENDIX

Figure 7.7: Layout
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7.4 Block Diagram of the original sump

Figure 7.8 shows the block diagram of the original sump Logic Analyzer.
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Figure 7.8: Block Diagram of the original sump Logic Analyzer
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